Appendix:

Common standard procedures in kinetics

- **1.** Diluting a solution
 - Using a burette: Fill a <u>dry</u> burette with FA1. Transfer X cm³ of FA1 into a <u>dry</u> 250 cm³ volumetric flask.
 <u>OR</u>
 Using a pipette: Pipette 25.0 cm³ of FA1 into a <u>dry</u> 250 cm³ volumetric flask.
 - Top up to the mark with deionised water.
 - **<u>Stopper</u>** the flask and <u>shake/mix well</u> until a homogeneous solution is obtained.
- **2.** Transferring a solution
 - Example: Using a <u>dry</u> <u>50 cm³</u> measuring cylinder, <u>measure</u> and <u>transfer</u> 30 cm³ of FA1 into a <u>dry</u> <u>100 cm³</u> beaker.
 - State the <u>capacity</u> of the apparatus, <u>volume</u> of reactant.
 - Everything is <u>dry</u>!
- 3. Transferring the last solution to kickstart the reaction
 - **<u>Rapidly transfer</u>** FA2 into the beaker. Start the stop watch immediately.
 - <u>Stir</u> the solution a few times using a <u>dry</u> <u>glass rod</u>.
- 4. Endpoint of reaction
 - Example: When the solution in the beaker turns from <u>brown</u> to (completely) <u>colourless</u>, <u>stop</u> the stopwatch and <u>record</u> the time taken for the solution to turn <u>colourless</u>.
 - Above: State the <u>colour change</u>. <u>Stop</u> the stopwatch. <u>Record</u> the time.
 - When the <u>white precipitate</u> in the beaker <u>completely</u> <u>obstructs</u> the 'X' marked on the while tile, <u>stop</u> the stopwatch and <u>record</u> the time taken for the time taken for the 'X' to be obstructed.
 - In general: State the <u>criteria</u> for the <u>endpoint</u> to be reached.

- 5. <u>Repeat</u> the experiment with varying concentrations
 - Repeat (steps A to B) according to the <u>table</u> below. Using a measuring cylinder, add <u>deionised water</u> to keep the <u>total volume</u> of the final reaction mixture <u>constant</u>.
 - Remember to draw your table.
 - Even if the volume of reactants used throughout the sets are the <u>same</u>, there still needs to be a column for that.
 - Correct headers with <u>units</u>.
 - Have a column for separate volumes of all reactants.
- 6. Varying the temperature of solutions
 - Example

Place the measuring cylinders in the water bath which is prepared by **<u>mixing</u> <u>tap water and ice water</u>**.

Place a (0.2°C interval) <u>thermometer</u> inside A and leave to allow both tubes inside the water bath for some time solutions in the boiling tubes to <u>equilibrate</u> at $15^{\circ}C$.

(Adding process, start stopwatch)

Stir well with the thermometer.

(Endpoint reached, stop stopwatch)

Record the <u>final temperature</u> of the <u>solution</u>. (If required show the working to calculate the average of the final and initial temperature)

<u>Repeat</u> the experiment for X other temperatures of T₁, T₂, T₃, T₄...

For temperature <u>above room temperature</u>, prepare the water bath by mixing tap water and <u>hot water</u>.

For temperature **below room temperature**, prepare the water bath by mixing tap water and **ice water**.

- State how the water bath is prepared.
- Record the **initial** and **final** temperature of the solution.

Planning for Kinetics (P)

- 7. Withdrawing aliquots and quenching process
 - (Reaction is prepared and has started, start stopwatch)
 - **Before X mins** from the start time, **pipette** 10.0 cm³ of the reaction mixture into a dry 250 cm³ conical flask.
 - <u>At X mins</u>, quench the withdrawn sample by adding 100 cm³ of cold water/any other quenching reagent. <u>Record</u> the <u>exact time of quenching</u>.
 - Carry out the <u>titration</u> of the quenched sample.
 - <u>Before X mins</u>, repeat steps A to B. Carry out the <u>titration</u> of each quenched sample.
- 8. Gas collection
 - (Adding of reactants into conical flask except the reactant that kickstarts the reaction)
 - Set up the experiment as shown in the diagram (Note: the stopper should be open)
 - (Add the reactant that kickstarts the reaction)
 - <u>Stopper</u> the conical flask <u>immediately</u> (Note: <u>only</u> use a <u>conical flask</u> to contain the reactant mixture) by inserting the rubber stopper at the mouth of the conical flask. <u>Start</u> the stopwatch <u>at the same time</u>.
 - Swirl the conical flask a few times gently and regularly. <u>Record</u> the reading on the gas syringe <u>every 0.5 minutes</u> until the reaction is complete. (That is when 3 consecutive readings recorded are the same/show no increase.)