Mark Scheme for Mock Prelim Paper 2

Mark Scheme Abbreviations

;	separate marking points (1 marking point is 0.5 marks, unless stated otherwise)
R	reject
I	ignore
COND	mark awarded is conditional on previous marking point
OWTTE	or words to that effect (accept other ways of expressing the same idea)
<u>underline</u>	actual word given must be used by candidate (grammatical variants accepted)
()	the word / phrase in brackets is not required
ORA	or reverse argument

Qu	estic	on	Answer	Guidance
1	а	i	giant metallic structure / lattice;	Candidates are expected
				to explain the origin of
			sea of delocalised electrons AND Cs ⁺ cations (arranged in a lattice);	metallic bonding, because
				the word 'metallic' does
			electrostatic attraction / electrostatic forces of attraction (known as metallic bonding);	not give any insight into
			hat was all strang and Oct actions.	the bonding present.
			between electrons and Cs⁺ cations;	
			R metallic bonding	
		ii	Li has <u>stronger</u> metallic bonding than Cs;	
			because charge density of Li⁺ cation is higher than that of Cs⁺ cation;	
			Li is harder to vapourise than Cs	
			Dh has mere valence all strang than Car	
			Pb has <u>more</u> valence electrons than Cs;	
			because Pb is in Group 14, while Cs is in Group 1;	
			Pb has more active electrons than Cs	
			Answers missing either one of the bullet points will be deducted 0.5m.	
			The total number of marks awarded must be non-negative.	
	b	I	$E \oplus (Li^{+}/Li) = -3.04 \text{ V AND } E \oplus (Na^{+}/Na) = -2.71 \text{ V AND } E \oplus (K^{+}/K) = -2.92 \text{ V};$	

		inconsistent reducing power down the group OR reducing power is approximately invariant / constant OR reducing power remains strong; OWTTE	
	ii	number of principal quantum shells increases down the group;	
		valence electron is further AND less attracted to the nucleus; OWTTE	
		1 st ionisation energy decreases down the group (The conclusion must be present. Deduct 0.5m for no conclusion. No marks awarded for this question for wrong conclusion.)	
		The total number of marks awarded must be non-negative.	
С	i	$Cs + H_2O \rightarrow Cs^+ + 0.5 H_2 + OH^-$ reaction has $E_{cell} > 0$; OWTTE	The reduction potential of Cs ⁺ /Cs is not given in the
		because Group 1 metals have $E \ominus (X^*/X)$ around -3 V / more negative than -2 V which is more negative than $E \ominus (H_2O/H_2) = -0.83$ V; OWTTE	Data Booklet, so it is the job of the candidate to offer further insight of
		Cs metal will react with water (spontaneously) to form Cs^+ ions;	what they would expect this value to be.
		unable to maintain [Cs ⁺] = 1 mol dm ⁻³ OR cannot place Cs in water;	
	ii	M1 for amount of electrons	
		$n_{e^-} = \frac{lt}{F} = \frac{2.00 \times 48 \times 60 \times 60}{96500} = 3.5813 \text{ mol}$	
		A1 for correct answer	
		mass = 3.5813 × 132.9 = 476 g	

	d		Award 1 mark for 3 points.	
			Award 2 marks for 5 points.	
			 down Group 1, the charge density of the cation decreases (because ionic radius increases down the group) 	
			 polarising power of the cation weakens / decreases down the group 	
			electron cloud of peroxide ion is less distorted / polarised down the group	
			 more energy required to break the O—O bond in the peroxide ion down the group 	
			decomposition temperature increases down the group	
2	а	i	intermediate B cannot be the intermediate because;	Both A and B are
				produced, but the question is asking you
			the C=C bond in B is non-polar / C atoms have same electronegativity (pi electrons in the C=C bond are localised);	which of them is the <i>intermediate</i> . The
				candidate should argue
			so there is no electron deficient / electrophilic site in the C=C bond in B ;	why B is NOT the
			NaBH ₄ cannot perform a nucleophilic attack on the C=C bond;	intermediate (and why A is). Because A and B are produced, there is no
			OR	value in arguing why A is
				produced. Why A can
			C=C bond is electron-rich;	react is also a given, so
			and will repel / prevent;	full credit is given to candidates that argue why

		the electron-rich nucleophile NaBH ₄ from reacting with B further;	B cannot react with
		an explanation on why A is produced will only gain max. 1m	NaBH₄.
	ii	The following tests are acceptable:	
		To separate test tubes containing A and B	
		Test 1	
		add 2,4-DNPH;	
		orange precipitate observed for A , but no precipitate is formed for B ;	
		Test 2	
		add KMnO₄ AND H₂SO₄(aq) OR NaOH(aq) (then heat);	
		purple solution remains for A, solution decolourises for B;	
		Test 3	
		add K ₂ Cr ₂ O ₇ (aq) AND H ₂ SO ₄ (aq) AND heat / warm;	
		orange solution remains for A , orange solution decolourises / turns green for B ;	
		Test 4	
		add Br ₂ (aq) OR Br ₂ (<i>I</i>) OR Br ₂ in CC <i>I</i> ₄ ;	

		orange solution remains for A , solution decolourises for B ; (for aqueous Br ₂ used) brown solution remains for A , solution decolourises for B ; (for pure or organic Br ₂ used)
		Test 5
		add Na(s) OR any group 1 metal;
		no effervescence observed for A, effervescence observed for B;
	iii	equal probability of the borohydride nucleophile from attacking the top and bottom of the plane with respect to the trigonal planar geometry of the carbonyl carbon;
		which forms equal proportions of butan-2-ol enantiomers (and their rotating power cancels each other);
	iv	H ₂ (g), high pressure, Ni (catalyst); (award 1m for this marking point, catalyst must be present) room temperature condition not needed
		accept other catalysts such as Pd/C (palladium on carbon), Pt
b	i	electrophilic addition; (1m is awarded)

		but in Y , the pi electrons in the C=C bond is localised OR not delocalised; OWTTE so the C=C bond is more electron-rich in B than that in 3-oxybut-1-ene; and will attack Br ₂ faster
3	а	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ; (1m or 0m awarded)
	b	in an octahedral ligand field;
		the d-orbitals split;
		into 2 different energy levels;
		an electron transitions / is excited / is promoted to a higher-energy level (known as d-d transition);
		wavelength / frequency of light absorbed;
		colour seen / observed / reflected / transmitted is complement of colour absorbed;
	С	when a system <u>at dynamic equilibrium</u> experiences a <u>change in conditions</u> , the <u>position of</u> <u>equilibrium</u> will <u>shift</u> so as to <u>reduce</u> OR <u>counteract</u> OR <u>lessen</u> that change; (1m or 0m awarded)
		R eliminate, stop
	d	aqueous ammonia is basic / contains OH ⁻ ;
		addition of NH ₃ (aq) causes concentration of OH ⁻ to increase, causing position of equilibrium 1 to shift right forming green precipitate of Ni(OH) ₂ ;

		ii	CO produced is poisonous;	
			and will irreversibly bind with haemoglobin which will deprive the body of vital oxygen; OWTTE	
			R toxic	
4	а	i	condensation OR electrophilic (aromatic) substitution; (award 1m or 0m)	
		ii	Hot NaOH(aq)	
			hydrolysis products correct (both carboxylate ion AND alcohol);	
			both phenols deprotonated;	

b	i	$CO_2 + 2 OH^- \rightarrow CO_3^{2-} + H_2O$ (award 1m or 0m)
	ii	ammonia is a weak base;
		the concentration of OH ⁻ is not high enough for the phenolphthalein indicator to exist in its violet/pink form;
		hence dilute ammonia is not suitable to be used as a base for "disappearing ink"
		award 0m if the candidate states dilute ammonia is suitable
		R explanations that ammonia reacts too slowly with CO_2 , or that CO_2 is a weak acid
	iii	M1 for calculating $[CO_3^{2-}]$ and $K_b(CO_3^{2-})$ $[CO_3^{2-}] = 0.5 \times 10^{-3} = 0.000500 \text{ mol dm}^{-3}$
		$K_{\rm b}({\rm CO_3}^{2\text{-}}) = 10^{10.3 - 14} = 1.9953 \times 10^{-4} \text{ mol dm}^{-3}$
		MA1 for final calucations
		$[OH^{-}] = \sqrt{1.9953 \times 10^{-4} \times 0.000500} = 3.1585 \times 10^{-4} \text{ mol dm}^{-3}$
		pH = 10.5
	iv	M1 for [HIn] + [In ⁻] and obtaining the ratio of $\frac{[HIn]}{[In-]}$ (or the reciprocal)
		$[HIn] + [In^{-}] = \frac{0.01}{318.3 \times \frac{100}{1000}} = 0.00031417 \text{ mol dm}^{-3}$

			ending of graph must be a sharp downturn	
		vi	thymolphthalein;	At the "acidic" range, the indicator must be
			the ink colour is blue;	colourless.
			accept: cresolphthalein; the corresponding ink colour is purple/violet;	
5	а	i	correct axes and vertical intercept labelled;	
			indicates constant half-life; (award 1m for this marking point)	
			labels essential concentrations which reader can deduce half-lives;	
		ii	graph shows second half-life twice of first half-life with appropriate labels; (award 1m for this marking point)	
			Candidates missing marking points in part (i) may be awarded the relevant credit in this question, with the marks awarded to part (i)	
	b		addition reactions will <u>destroy</u> / <u>disrupt</u> the aromaticity;	
			and to do so takes a lot of energy / energetically unfavourable / high activation energy / a (much) more unstable addition product;	
	С		M_r = 132, so H has 10 carbons and 12 hydrogens; (need not be explicitly written out, but structure must have 10 carbons and 12 hydrogens)	

		understanding of multiple substitutions indicated;
	iii	lone pair of the protonated phenol is less available / protonated phenol is a weaker nucleophile;
		because the lone pair is delocalised into the benzene ring;
	iv	deduces B has chlorine;
		mole ratio leading to empirical formula $C_3H_4O_2Cl$; (award 1m for this marking point)
		correct molecular formula C ₆ H ₈ O ₄ Cl ₂ ;
		correct structure of B ; (award 1m for this marking point)
	۷	any 2 of the following:
		PCl ₅ ;
		PCl ₃ ;
		SOCI ₂ ;

	vi	1m for each of C and D	
		$c \\ 0 \\ 0 \\ NH \\ HN \\ HN \\ j;$	
	vii	amine X may react with 2 different molecules of B ; a large volume of an appropriate solvent dilutes B and X OR lowers the concentration of B and X ;	The candidate needs to display understanding that the byproduct(s) are formed through an intermolecular reaction,

		so that it is less probable for X to react with 2 different molecules of B due to the lower frequency of effective intermolecular collisions; so after 1 molecule of B reacts with X , the resultant intermediate will be more likely to undergo an intramolecular reaction to form C instead;	while the desired product will be formed from an intramolecular reaction.
b		Na ⁺ for the top box; K ⁺ for the bottom box;	From the data booklet, the radius of Na ⁺ is 95 pm, so its diameter is 190 pm which falls between the range of 170 and 220 ppm. For K ⁺ , we expect the radius to be less than 181 pm (C <i>l</i> ⁻) but more than 99 pm (Ca ²⁺). This radius is the best fit for the range of diameter 260
			to 320 pm (radius from 130 to 160 pm).
С	i	circles all O atoms only; (award 1m for this marking point) <u>8</u> hydrogen bonds; (award 1m for this marking point)	
	ii	chemical shift of 4.82 only appears when a mixture of PhH and PhF is used; which must be attributed to 1 molecule of PhH and PhF each being encapsulated (because the other 2 chemical shifts are attributed to 2 molecules of PhH and PhF are, separately, encapsulated);	
	iii	the encapsulation process has a positive entropy change;	

so there is a net increase in the number of free molecules (resulting in more disorder);	
$\Delta G = \Delta H - T\Delta S;$	
hence, the gradient of the graph is negative;	
this line is Y ;	