Mark Scheme for Mock Prelim Paper 2

Mark Scheme Abbreviations

;	separate marking points (1 marking point is 0.5 marks, unless stated otherwise)
\mathbf{R}	reject
I	ignore
COND	mark awarded is conditional on previous marking point
OWTTE	or words to that effect (accept other ways of expressing the same idea)
underline	actual word given must be used by candidate (grammatical variants accepted) ()
ORA	or word / phrase in brackets is not required

Question			Answer	Guidance
1	a	i	giant metallic structure / lattice; sea of delocalised electrons AND Cs^{+}cations (arranged in a lattice); electrostatic attraction / electrostatic forces of attraction (known as metallic bonding); between electrons and Cs^{+}cations; \mathbf{R} metallic bonding	Candidates are expected to explain the origin of metallic bonding, because the word 'metallic' does not give any insight into the bonding present.
		ii	Li has stronger metallic bonding than Cs ; because charge density of Li^{+}cation is higher than that of Cs^{+}cation; - Li is harder to vapourise than Cs Pb has more valence electrons than Cs ; because Pb is in Group 14, while Cs is in Group 1; - Pb has more active electrons than Cs Answers missing either one of the bullet points will be deducted 0.5 m . The total number of marks awarded must be non-negative.	
	b	i	$\mathrm{E} \ominus(\mathrm{Li}+/ \mathrm{Li})=-3.04 \mathrm{~V}$ AND $\mathrm{E} \ominus\left(\mathrm{Na}{ }^{+} / \mathrm{Na}\right)=-2.71 \mathrm{~V}$ AND $\mathrm{E} \ominus(\mathrm{K}+/ \mathrm{K})=-2.92 \mathrm{~V}$;	

	d		Award 1 mark for 3 points. Award 2 marks for 5 points. - down Group 1, the charge density of the cation decreases (because ionic radius increases down the group) - polarising power of the cation weakens / decreases down the group - electron cloud of peroxide ion is less distorted / polarised down the group - more energy required to break the $\mathrm{O}-\mathrm{O}$ bond in the peroxide ion down the group - decomposition temperature increases down the group	
2	a	i	intermediate \mathbf{B} cannot be the intermediate because; the $\mathbf{C = C}$ bond in \mathbf{B} is non-polar / C atoms have same electronegativity (pi electrons in the $\mathrm{C}=\mathrm{C}$ bond are localised); so there is no electron deficient / electrophilic site in the $C=C$ bond in B; NaBH_{4} cannot perform a nucleophilic attack on the $\mathrm{C}=\mathrm{C}$ bond; OR $\mathrm{C}=\mathrm{C}$ bond is electron-rich; and will repel / prevent;	Both A and B are produced, but the question is asking you which of them is the intermediate. The candidate should argue why B is NOT the intermediate (and why A is). Because \mathbf{A} and \mathbf{B} are produced, there is no value in arguing why \mathbf{A} is produced. Why A can react is also a given, so full credit is given to candidates that argue why

		the electron-rich nucleophile NaBH_{4} from reacting with \mathbf{B} further; an explanation on why \mathbf{A} is produced will only gain max. 1 m	B cannot react with NaBH_{4}.
	ii	The following tests are acceptable: To separate test tubes containing \mathbf{A} and \mathbf{B} Test 1 add 2,4-DNPH; orange precipitate observed for \mathbf{A}, but no precipitate is formed for \mathbf{B}; Test 2 add KMnO_{4} AND $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \mathrm{OR} \mathrm{NaOH}(\mathrm{aq})$ (then heat); purple solution remains for A, solution decolourises for B; Test 3 add $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})$ AND $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ AND heat / warm; orange solution remains for \mathbf{A}, orange solution decolourises / turns green for \mathbf{B}; Test 4 add $\mathrm{Br}_{2}(\mathrm{aq}) \mathbf{O R} \mathrm{Br}_{2}(I) \mathbf{O R ~} \mathrm{Br}_{2}$ in CCl_{4};	

			all partial charges, formal charges indicated; slow step correctly identified; all curly arrows correct; correct final product;	
		ii	test tube \mathbf{Y} (no marks awarded for writing test tube \mathbf{X} as the answer) the pi-electrons in the $\mathrm{C}=\mathrm{C}$ bond are delocalised in the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ system; since O is more electronegative than C, the electron density in the $C=C$ bond decreases $O R C=C$ bond is less electron rich (because electron density will be richer towards O);	

			CO produced is poisonous; and will irreversibly bind with haemoglobin which will deprive the body of vital oxygen; OWTTE R toxic		
4	a	i	Condensation OR electrophilic (aromatic) substitution; (award 1m or Om)		
		ii	Hot NaOH(aq) hydrolysis products correct (both carboxylate ion AND alcohol); both phenols deprotonated;		

b	i	$\mathrm{CO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ (award 1m or 0 m)	
	ii	ammonia is a weak base; the concentration of OH^{-}is not high enough for the phenolphthalein indicator to exist in its violet/pink form; hence dilute ammonia is not suitable to be used as a base for "disappearing ink" award 0 m if the candidate states dilute ammonia is suitable \mathbf{R} explanations that ammonia reacts too slowly with CO_{2}, or that CO_{2} is a weak acid	
	iii	M1 for calculating $\left[\mathrm{CO}_{3}{ }^{2}\right]$ and $K_{\mathrm{b}}\left(\mathrm{CO}_{3}{ }^{2-}\right)$ $\left[\mathrm{CO}_{3}{ }^{2}\right]=0.5 \times 10^{-3}=0.000500 \mathrm{~mol} \mathrm{dm}^{-3}$ $K_{\mathrm{b}}\left(\mathrm{CO}_{3}^{2-}\right)=10^{10.3-14}=1.9953 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ MA1 for final calucations $\left[\mathrm{OH}^{-}\right]=\sqrt{1.9953 \times 10^{-4} \times 0.000500}=3.1585 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=10.5$	
	iv	M1 for [HIn] $+\left[\mathrm{In}^{-}\right]$and obtaining the ratio of $\frac{[\mathrm{HIn}]}{[\mathrm{In}]}$ (or the reciprocal) $[\mathrm{HIn}]+\left[\mathrm{In}^{-}\right]=\frac{0.01}{318.3 \times \frac{100}{1000}}=0.00031417 \mathrm{~mol} \mathrm{dm}^{-3}$	

			- ending of graph must be a sharp downturn	
		vi	thymolphthalein; the ink colour is blue; accept: cresolphthalein; the corresponding ink colour is purple/violet;	At the "acidic" range, the indicator must be colourless.
5	a	i	correct axes and vertical intercept labelled; indicates constant half-life; (award 1 m for this marking point) labels essential concentrations which reader can deduce half-lives;	
		ii	graph shows second half-life twice of first half-life with appropriate labels; (award 1 m for this marking point) Candidates missing marking points in part (i) may be awarded the relevant credit in this question, with the marks awarded to part (i)	
	b		addition reactions will destroy / disrupt the aromaticity; and to do so takes a lot of energy / energetically unfavourable / high activation energy / a (much) more unstable addition product;	
	C		$M_{\mathrm{r}}=132$, so \mathbf{H} has 10 carbons and 12 hydrogens; (need not be explicitly written out, but structure must have 10 carbons and 12 hydrogens)	

(| concludes that the structure must be in the form of |
| :--- |
| groups to be determined (R_{1} and R_{2} may be the same as a $\mathrm{C}=\mathrm{C}$ double bond will undergo oxidative |
| cleavage); |
| mentions oxidative cleavage; |
| mentions side-chain oxidation; |
| identifies |

			identifies	
6	a	i	unfavourable ion-induced dipole interactions between ions and solvent molecules releases little energy; to overcome the strong ionic bonds between K^{+}and MnO_{4}^{-}ions;	
		ii	acid-base exchange shown (mono-deprotonation acceptable); (award 1m for this marking point) - curly arrows are NOT required $\mathrm{S}_{\mathrm{N}} 2$ mechanism drawn; partial charges with correct curly arrows; transition state drawn; (award 1m for this marking point)	

		understanding of multiple substitutions indicated;	
	iii	Ione pair of the protonated phenol is less available / protonated phenol is a weaker nucleophile; because the lone pair is delocalised into the benzene ring;	
	iv	deduces B has chlorine; mole ratio leading to empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{Cl}$; (award 1 m for this marking point) correct molecular formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{C} l_{2}$; correct structure of \mathbf{B}; (award 1 m for this marking point)	
	v	any 2 of the following: PCl5; $\mathrm{PCl}_{3} ;$ SOCl_{2};	

		so that it is less probable for \mathbf{X} to react with 2 different molecules of \mathbf{B} due to the lower frequency of effective intermolecular collisions; so after 1 molecule of \mathbf{B} reacts with \mathbf{X}, the resultant intermediate will be more likely to undergo an intramolecular reaction to form \mathbf{C} instead;	while the desired product will be formed from an intramolecular reaction.
b	b	Na^{+}for the top box; K^{+}for the bottom box;	From the data booklet, the radius of Na^{+}is 95 pm , so its diameter is 190 pm which falls between the range of 170 and 220 ppm. For K^{+}, we expect the radius to be less than 181 pm (Cl) but more than $99 \mathrm{pm}\left(\mathrm{Ca}^{2+}\right)$. This radius is the best fit for the range of diameter 260 to 320 pm (radius from 130 to 160 pm).
	C i	circles all O atoms only; (award 1m for this marking point) $\underline{8}$ hydrogen bonds; (award 1 m for this marking point)	
	ii	chemical shift of 4.82 only appears when a mixture of PhH and PhF is used; which must be attributed to 1 molecule of PhH and PhF each being encapsulated (because the other 2 chemical shifts are attributed to 2 molecules of PhH and PhF are, separately, encapsulated);	
	iii	the encapsulation process has a positive entropy change;	

	because the encapsulation of 1 molecule of AdA results in 2 benzene molecules being released; so there is a net increase in the number of free molecules (resulting in more disorder); $\Delta G=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} ;$ hence, the gradient of the graph is negative; this line is $\mathrm{Y} ;$	

