Guided Inquiry - The theory of acid and bases

Objectives: In this guided inquiry worksheet, you will

- understand how to quantify the strength of an acid and base
- understand how to calculate the pH of an acid or base dissolved in water
- understand how a buffer works
- understand how to calculate the pH of a buffer

You are required to be familiar with the following concepts

- a conjugate acid and base pair
- the derivation of the equilibrium constant, K_{c}, and its significance
- the calculation of pH

Although not required in H 2 Chemistry, you will be requested to solve quadratic equations.

Section 1: the pH of artificial vinegar

Vinegar contains ethanoic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$. Artificial vinegar found in supermarkets has a $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ concentration of 3.95 grams per 100 ml . The sour taste of vinegar can be attributed to the presence of $\mathrm{H}_{3} \mathrm{O}^{+}$ions. We can measure this "sourness" through finding out the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in artificial vinegar.

1	In water, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ partially ionises to form $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ions. The equilibrium is represented by $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})$ State an expression for K_{c} of this equilibrium.
2	The K_{c} of this equilibrium is known as the K_{a} (acid dissociation constant) of ethanoic acid. The unit of K_{a} is hence $\mathrm{mol} \mathrm{dm}^{-3}$.
3	You are given that at 25 degrees Celsius, $K_{a}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. First, assume that $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is not ionised at all when added to water. This is before the acid-base equilibria occurs. Calculate the concentration of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in vinegar, in $\mathrm{mol} \mathrm{dm}^{-3}$. Artificial vinegar found in supermarkets has a concentration of 3.95 grams per 100 ml . Refer to A_{r} values in your Data Booklet.
4	Let $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x \mathrm{~mol} \mathrm{dm}^{-3}$. By using a I-C-E table, or otherwise, express $\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$and $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$ in terms of x and $\mathrm{mol} \mathrm{dm}^{-3}$.

5	Hence, give an expression for $K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ in terms of x.
6	The expression (your answer to 5) can be rearranged to form a quadratic equation in terms of x. Solve for x. You may use a graphing or scientific calculator. Find the pH of artificial vinegar to 2 decimal places.
7	Consider the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the initial concentration of ethanoic acid (before dissociation took place). What is the percentage of ethanoic acid that has ionised in water?
8	The percentage you have found in 7 is small. Many weak acids dissociate sparingly in water. We are able to simplify our method to calculate x through an approximation. The denominator of the expression you have found in 5 can be approximated to your answer in 3-that is: $\frac{x^{2}}{0.656}=K_{a}$ where the term $0.656-x$ is rewritten as 0.656 . You do not need to solve a quadratic equation in x with this approximation. Use this new expression to solve for x again.
9	Compare your answer in 8 to your answer in 6. What is the percentage discrepancy of your answer in 8 as compared to your answer in $\mathbf{6}$? In your opinion, is this percentage discrepancy acceptable?
10	In H2 Chemistry, you do not need to solve a quadratic equation. The approximation suggested in 8 will help you to avoid solving a quadratic equation. Why can the term $0.656-x$ be approximated to 0.656 ? You should consider your answer to 7 .

Section 2: the pH of ammonia

We are able to find the pH of a solution of ammonia with concentration $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ with a similar method introduced in Section 1.

1 In water, ammonia partially ionises to form OH^{-}and NH_{4}^{+}ions. The equilibrium is represented by

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

The expression for K_{c} of this equilibrium is known as the K_{b} (base dissociation constant) of ammonia. The unit of K_{b} is hence $\mathrm{mol} \mathrm{dm}^{-3}$.

2 You are given that at 25 degrees Celsius, $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.80 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.
Let $\left[\mathrm{OH}^{-}\right]=x \mathrm{~mol} \mathrm{dm}^{-3}$.
By using a I-C-E table, or otherwise, express $\left[\mathrm{NH}_{4}{ }^{+}\right]$and $\left[\mathrm{NH}_{3}\right]$ in terms of x and $\mathrm{mol} \mathrm{dm}{ }^{-3}$.

3 Find $\left[\mathrm{OH}^{-}\right]$by using a similar approximation shown in Section 1, question 8.

4 We will now find the pH of the solution of ammonia.
We can relate $\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$through an equation.
Water ionises partially-the equilibrium is

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

$$
K_{\mathrm{c}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

At 25 degrees Celsius, $K_{\mathrm{c}}=10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$. This data can be found in your Data Booket and the equilibrium constant is known as K_{w}.

Calculate the pH of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ of ammonia.
5 State the expression of $K_{a}\left(\mathrm{NH}_{4}{ }^{+}\right)$and using information from 4, calculate $K_{\mathrm{a}}\left(\mathrm{NH}_{4}{ }^{+}\right)$.
$6 \quad$ The expressions $\mathrm{pK}_{\mathrm{a}}, \mathrm{pK}_{\mathrm{b}}$ and pK_{w} can be calculated in the same way as pH . For example, $\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(K_{\mathrm{a}} / \mathrm{mol} \mathrm{dm}^{-3}\right)$.

Using the conjugate acid-base pair $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$ as an example, show that $K_{\mathrm{a}} K_{\mathrm{b}}=K_{\mathrm{w}}$ and $\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}$.

$$
\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})
$$

Hence, determine if $\mathrm{CH}_{3} \mathrm{NH}_{2}$ or NH_{3} is the stronger base from the value of K_{c}.

Section 3: Buffering action

Antigen-based Rapid Test Kits contain a buffer solution. Some of the buffer solution contains tris. tris has the chemical formula $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$ and its conjugate acid is $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$. The $\mathrm{p} K_{\mathrm{a}}$ of its conjugate acid is 8.07 at 25 degrees Celusius.

1 A buffer solution is a solution that maintains its pH when a small amount of acid or base is added to it.

If the pH is maintained, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is maintained too.

2 A buffer solution is found to have a pH of 7.5000 at 25 degrees Celsius.

By considering the equilibrium

$$
\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

and the expression for K_{a}, calculate the ratio

$$
\frac{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right]}{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}^{+}\right]}
$$

If you know the Henderson-Hasselbalch equation, do not use it.

3 Assume that in the buffer $\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}\right]=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.
$10^{-7} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$is added into $5.00 \mathrm{~cm}^{3}$ solution of the buffer after a swab. The volume of the buffer remains the same.
$\mathrm{H}_{3} \mathrm{O}^{+}$is a strong acid, so any $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$ will react fully with $\mathrm{H}_{3} \mathrm{O}^{+}$to form $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$.

This equation is represented by $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$.

Now, calculate the pH of the buffer to 4 decimal places.

4 What is the ratio

$$
\frac{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right]}{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}^{+}\right]}
$$

when $10^{-7} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$is added into the buffer? Compare this value to your answer in 2.

5 Hence, if the pH of the buffer were to be maintained, must the ratio

$$
\frac{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right]}{\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}^{+}\right]}
$$

be maintained?
6 To a fresh sample of $5.00 \mathrm{~cm}^{3}$ solution of the buffer, $0.100 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid $\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.00 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ is added into the buffer.

Will all $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$ be reacted? What will $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$be in the end?
Hence, explain why only a small amount of acid or base should be added into the buffer solution.

7 If more acid or base is expected to be added into the buffer solution, what do you think can be done to make the buffer solution more effective? Consider what reacts with the acid or base in the buffer solution.
$8 \quad$ A $20.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of tris solution is titrated against $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of hydrochloric acid.

Calculate the pH of the solution when

- $0 \mathrm{~cm}^{3}$
- $10 \mathrm{~cm}^{3}$
- $20 \mathrm{~cm}^{3}$
of hydrochloric acid is added into it.
$9 \quad$ When $10.0 \mathrm{~cm}^{3}$ of hydrochloric acid is added into the tris solution, this results in a buffer solution being formed as both $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$ and $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$are present in the solution.

However, when no hydrochloric acid is added into the tris solution, the tris contains almost exclusively $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$.

The graph of the pH of the solution against volume of hydrochloric acid added is shown below.

Construct an explain as to why there is a rather significant drop in pH at first, before the pH becomes relatively constant in the middle. You should take into account of the buffering action of the solution as hydrochloric acid is progressively added.

