1	а	i	H ₂ is oxidised, left electrode is anode [0.5] and polarity is negative [0.5]			
			O_2 is reduced to H_2O_2 , right electrode is cathode [0.5] and polarity is positive [0.5]			
			Electrons flow FROM the LEFT electrode TO the RIGHT electrode [1]			
		ii	Anode: $H_2 \rightarrow 2 H^+ + 2e^-$			
			Cathode: $O_2 + 2 H^+ + 2e^- \rightarrow H_2O_2$			
			both for 1m			
			State symbols not mandatory			
			Deduct 0.5m for usage of reversible arrows			
		iii	H ₂ O [1]			
			$E_{cell} \ominus$ (H ₂ O ₂ production) = +0.69 V [1]			
			Since $E_{cell} \oplus (H_2O_2 \text{ production}) = +1.23 \text{ V}$, H_2O is			
			preferentially produced. [1, conditional of attainment of previous marking point]			
			OR			
			After H_2O_2 is produced, H_2O_2 can be reduced by hydrogen gas further to water. [1]			
			$E_{cell} \ominus = E \ominus (H_2O_2/H_2O) - E \ominus (H^+/H_2) = +1.77 V$ (positive) (spontaneous process) [1]			
			Hence H_2O will be more likely to be formed.			
	b	i	Step 2: $OH* \rightarrow H^+(aq) + e^- + O* [1]$			
			Step 3: $O* + H_2O(l) \rightarrow H^+(aq) + e^- + HOO* [1]$ (accept HO_2* , $OOH*$ or O_2H* in place of $HOO*$)			
			Step 4: HOO* \rightarrow H ⁺ (ag) + e ⁻ + O ₂ (g) + * [1]			
			Deduct 1m maximum for missing state symbols and * indicators, deduct 0.5m per missing			
			No ECE awarded			
		ii	A convincing explanation must be given [1]			
			Candidates are required to present the sum of the left hand and right hand side for full credit			
			Step 1 $H_2O(l) + * \rightarrow OH* + H^+(ag) + e^-$			
			Step 2 $OH* \rightarrow H^+(ag) + e^- + O*$			
			Step 2 Or + H ₂ O(I) \rightarrow H ⁺ (aq) + o ⁻ + HOO*			
			Step 3 0^{+} $11_{2}0(l)$ (l) (l) (a) $+ e^{-}$ $+ 100^{+}$			
			Step 4 $HOO* \rightarrow H'(aq) + e + O_2(g) + *$			
			Total $H_2O(l) + * + OH * + O* + H_2O(l) + HOO* \rightarrow OH* + H^{+}(aq) + e^{-} +$			
			$H^{+}(aq) + e^{-} + O^{*} + H^{+}(aq) + e^{-} + HOO^{*} + H^{+}(aq) + e^{-} + O_{2}(g) + *$			
			Cancelling common terms in red gives			
			$2 H_2O(l) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^{-1}$			
		iii	The 2e-WOR is 2 H ₂ O(l) \rightarrow H ₂ O ₂ (aq) + 2 H ⁺ (aq) + 2 e ⁻			
			Step 2 of 2e-WOR is OH* + H ₂ O(l) \rightarrow H ₂ O ₂ (aq) + H ⁺ (aq) + e ⁻ + * [1]			
			No penalty for omitting/wrong state symbols			
	с	i	x < 2.38 [0.5]			
			This prevents OH* from <u>spontaneously</u> releasing \bullet OH(aq) (since the process has Δ G < 0			
			otherwise). [1]			
			y > 3.52 [0.5]			
			From OH_* , either $H_2O_2(aq)$ or O_* can be produced. To favour $H_2O_2(aq)$ to be produced, the			
			free energy of formation of H_2O_2 must be <u>less positive</u> than that of O* so that the formation			

1			of H ₂ O ₂ is thermodynamically favoured OR H ₂ O ₂ will be more stable than O* which favours its			
			formation. [1]			
		ii	Ticks TiO ₂ only [1] (award 0m for all other combinations)			
	d		n(electrons) = Q/F = It/F = 0.10 × 10 ⁻³ × 20 × 60 / 96500 = 1.2435 × 10 ⁻⁶ mol [1]			
$n(H_2O_2)$, maximum = 1.2435 × 10 ⁻⁶ / 2 = 6.2175 × 10 ⁻⁷ mol [0.5]						
		2 mol MnO_4^- reacts with 5 mol of H_2O_2 [0.5]				
			$n(H_2O_2)$, detected in 5.0 cm ³ sample = $4.70 \times 10^{-3} \times 1.00 \times 10^{-5} \times 5 / 2 = 1.175 \times 10^{-7}$ mol			
			[0.5]			
			$n(H_2O_2)$, detected = $1.175 \times 10^{-7} \times 4 = 4.70 \times 10^{-7} \text{ mol } [0.5]$			
			FE = 4.70 / 6.2175 × 100% = 75.6% [1]			
	е		Accept any 2 advantages, 1 valid advantage for 1m.			
			2e-ORR uses 2 raw materials while 2e-WOR uses 1 raw material			
			• 2e-ORR uses flammable hydrogen gas while 2e-WOR uses water which is safe and easily			
			available			
			• 2e-WOR can produce 2 useful products (H ₂ and H ₂ O ₂) from H ₂ O alone, while the 2e-ORR			
			will only produce 1 useful product from 2 raw materials.			
			 2e-WOR is an electrolytic setup where settings such as voltage, current can be easily 			
			adjusted to favour the production of H_2O_2 . However, the 2e-ORR doesn't present such an			
			advantage because it's an electrochemical/galvanic cell.			
			• H ₂ O ₂ produced from 2e-WOR can be used immediately for its purposes. However, H ₂ O ₂			
			produced from 2e-ORR must be isolated first because it's produced in an acidic			
	_		electrolyte.			
	f		Low bond energy of O—O at 150 kJ mol ⁻¹ . [1]			
	1	1				
2	а		The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u>			
2	a		The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> oxidation state, which by extension, will only act as reducing agents. [1]			
2	a b	i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1]			
2	a b	i 	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] $NH_3 + CH_4 \rightarrow HCN + 3 H_2$ [1] <u>State symbols not mandatory</u>			
2	a b	i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] $NH_3 + CH_4 \rightarrow HCN + 3 H_2$ [1] <u>State symbols not mandatory</u> Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> caurae of water to form glycing. [1]			
2	a b	i ii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] $NH_3 + CH_4 \rightarrow HCN + 3 H_2$ [1] <u>State symbols not mandatory</u> Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] <u>Candidate must state the source of water and that A can be hydrolysed</u>			
2	a b	i ii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ → HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Clycine has a bigher solubility in water compared to A			
2	a b	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] $NH_3 + CH_4 \rightarrow HCN + 3 H_2$ [1] <u>State symbols not mandatory</u> Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] <u>Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A. <u>Glycine can form more favourable</u>/stronger ion-dipole interactions [0, 5] with water since it</u>			
2	a b	i ii iii	 The hydrides of the elements (NH₃, CH₄) in the atmosphere (excluding H₂) are in its <u>lowest</u> <u>oxidation state</u>, which by extension, will only act as reducing agents. [1] NH₃ + CH₄ → HCN + 3 H₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A. Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or 			
2	a b	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ → HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]			
2	a b	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ → HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular			
2	a b	i ii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ → HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5].			
2	a b	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + y			
2	a b c	i 11 111	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates)			
2	a b c	i ii i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> oxidation state, which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: ² ³ He ²⁺ \rightarrow ⁴ He ²⁺ + ² ¹ H ⁺			
2	a b c	i II III	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺			
2	a b c	i ii i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺ Award 1m for each step that is correct Where protons are abbreviated penalize 0.5m in total			
2	a b c	i II III	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its lowest oxidation state, which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺ Award 1m for each step that is correct Where protons are abbreviated, penalise 0.5m in total Where mass number(s) are omitted negalize 0.5m in total			
2	a b c	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺ Award 1m for each step that is correct Where protons are abbreviated, penalise 0.5m in total Where mass number(s) are omitted, penalise 0.5m in total Where charges are omitted, penalise 0.5m in total			
2	a b c	i ii i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] <u>State symbols not mandatory</u> Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] <u>Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A. Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹H⁺ + ¹H⁺ \rightarrow ²H⁺ + e⁺ + v Step 2: ¹H⁺ + ²H⁺ \rightarrow ³He²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³He²⁺ \rightarrow ⁴He²⁺ + 2 ¹H⁺ Award 1m for each step that is correct Where protons are abbreviated, penalise 0.5m in total Where charges are omitted, penalise 0.5m for each mistake up to 1m in total <i>Candidates are reminded to read the auestion: the words 'nucleif' and 'nucleus' imply that all</i></u>			
	a b	i ii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A . Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺ Award 1m for each step that is correct Where protons are abbreviated, penalise 0.5m in total Where charges are omitted, penalise 0.5m for each mistake up to 1m in total Candidates are reminded to read the question: the words 'nuclei' and 'nucleus' imply that all electrons are stripped off the atom			
	a b c	i ii i	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its <u>lowest</u> <u>oxidation state</u> , which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] <u>State symbols not mandatory</u> Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] <u>Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A. Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹H⁺ + ¹H⁺ \rightarrow ²H⁺ + e⁺ + v Step 2: ¹H⁺ + ²H⁺ \rightarrow ³He²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³He²⁺ \rightarrow ⁴He²⁺ + 2 ¹H⁺ Award 1m for each step that is correct Where protons are abbreviated, penalise 0.5m in total Where charges are omitted, penalise 0.5m in total Where charges are omitted, penalise 0.5m for each mistake up to 1m in total <i>Candidates are reminded to read the question: the words 'nuclei' and 'nucleus' imply that all electrons are stripped off the atom High kinetic energy needed to overcome the repulsion between positively charged nuclei [1]</i></u>			
	a b c	i ii iii iii	The hydrides of the elements (NH ₃ , CH ₄) in the atmosphere (excluding H ₂) are in its lowest oxidation state, which by extension, will only act as reducing agents. [1] NH ₃ + CH ₄ \rightarrow HCN + 3 H ₂ [1] State symbols not mandatory Glycine can be produced from A because A can be <u>hydrolysed</u> with <u>water vapour being the</u> <u>source of water</u> to form glycine. [1] Candidate must state the source of water and that A can be hydrolysed. Glycine has a higher solubility in water compared to A. Glycine can form more favourable/stronger ion-dipole interactions [0.5] with water since it exists as a zwitterion and will have a giant ionic structure [0.5, either giant ionic structure or zwitterion]. But A can only form weaker hydrogen bonds with water [0.5] since A has a simple molecular structure [0.5]. Step 1: ¹ H ⁺ + ¹ H ⁺ \rightarrow ² H ⁺ + e ⁺ + v Step 2: ¹ H ⁺ + ² H ⁺ \rightarrow ³ He ²⁺ (inclusion of gamma ray is not needed for candidates) Step 3: 2 ³ He ²⁺ \rightarrow ⁴ He ²⁺ + 2 ¹ H ⁺ Award 1m for each step that is correct Where mass number(s) are omitted, penalise 0.5m in total Where charges are omitted, penalise 0.5m for each mistake up to 1m in total Candidates are reminded to read the question: the words 'nuclei' and 'nucleus' imply that all electrons are stripped off the atom High kinetic energy needed to overcome the repulsion between positively charged nuclei [1] Minimum ratio = 80.3 (accept 4 s.f.: 80.26) [1] (4 s.f. value is 80.26 not 80.25)			

		ii	Rate constant, $k = \ln 2 / (3.7 \times 10^{-22}) = 1.8734 \times 10^{21} \text{ s}^{-1}$			
			Since the decay has a constant half-life, the decay is first order both points for [1]			
			Rate of depletion (in amount per unit time) =			
			$k \times n = 1.8734 \times 10^{21} \times 2.5 = 4.68 \times 10^{21} \text{ mol s}^{-1} [1]$			
			Number of half-lives = $\log_{0.5}(10^{-6}/2.5) = 21.2535$ [0.5]			
			Time taken = $21.2535 \times 3.7 \times 10^{-22} = 7.86 \times 10^{-21} \text{ s} [0.5]$			
		iii	The angle of deflection is proportional to charge/mass, q/m			
				Relative charge	Relative mass	q/m
			² H	+1	2	
				+2	4	
			¹² C	+4	8	+0.5
			160	+0	12	
				+8	10	
			Sinco all a/m valuos ar	o tho samo thoy will de	flact at the same and	10
			Award 1m for calculati	on of all a/m values	chect at the same ang	ie.
			Award 1m for convinci	ng explanation		
				ing explanation		
3	а	i				
-		-				
				positi	vely charged	
				, metal	ions surrounded	
			+ $+$ $+$ $+$)_ + + by a 's	sea' of	
				mobil	e delocalised	
				electr	ons	
			+ + 0+			
				⊖ ⊖ 'sea' o	of delocalised	
				electr	ons	
			Laballad dia sua us [4]			
			Cabelled diagraffi [1]	structure [0 E] where r	ositivaly charged Os	cations are arranged in a
			lattice [0 5] and a 'sea'	of delocalised electron	is [0 5] are surroundir	ations are all angeu in a
			strong electrostatic at	raction [0 5] between t	be electrons and the	cations
			Metallic honding is not	accented as candidate	s are expected to exp	ound on this term (i.e.
			explain the origin of m	etallic bonding).		
		ii	cis-trans [1]			
			Award 0.5m each for e	ach correct isomer		
			0	0		
			0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				Os_		
			о от	И ОН		
			Ö and	0		
			Take note that the oxy	gen atoms that are dou	bly bonded to Os, and	that singly bonded to Os
			with a negative forma	charge, are chemically	equivalent due to res	onance.
		iii	Catalyst [1]	,		
			because OsO ₄ is regen	erated again. [1]		
		iv	Reduction in oxidation	state of N (from NMO	to N-methylmorpholi	ne) is -2.

			Oxidation state of Os in OsO4 is +8, so oxidation state of Os in the reduced osmium			
			compound is +6. [1]			
		v	Not selective OR other unintended oxidation reactions may occur [1]			
	b	i	E(Os ^{x+} /Os) is more positive/less negative than E(Ni ²⁺ /Ni) [1]			
		ii	Oxidise Au and Os to their highest oxidation states. Then add excess NaOH(aq). [0.5] Filter			
			and <u>collect the precipitate</u> [0.5]			
			The subsequent treatment of the precipitate (which contains gold) is not required.			
		iii	OsO ₄ has a <u>simple molecular structure</u> [0.5] with <u>weak dispersion forces</u> between OsO ₄ molecules [0.5].			
	С		A catalyst speeds up the forward and backward reaction to the same extent, so the position			
			of equilibrium does not change with the catalyst used, and the composition of ammonia, by			
			amount, will not change at equilibrium (for the same temperature). [1]			
			Os is a rare metal OR expensive metal while Fe is readily available OR cheap. [1]			
4	а	i	$IO_3^- + 5 I^- + 6 H^+ \rightarrow 3 I_2 + 3 H_2O [1]$			
			Ignore state symbols			
		ii	$I_2 + 2 \text{ Na}_2\text{S}_2\text{O}_3 \rightarrow 2 \text{ NaI} + \text{Na}_2\text{S}_4\text{O}_6 [1]$			
			Ignore state symbols			
			Accept ionic equation			
		iii	[1] for calculating amount of iodine in salt sample			
			$n_{l_2} = \frac{7.50}{1000} \times 0.00235 \times \frac{1}{2} = 8.8125 \times 10^{-6} \text{ mol}$			
			$n_1 = 8.8125 \times 10^{-6} \times \frac{-}{3} = 2.9375 \times 10^{-6} \text{ mol}$			
			[1] for mass of iodine in salt sample			
			mass of iodine = 2.9375 × 10 ⁻⁶ × 126.9 = 3.7277 × 10 ⁻⁴ g			
			[1] for correct conclusion and conversion of concentration of iodine			
			concentration of iodine in ppm = $\frac{3.7277 \times 10^{-4} \times 10^3 \text{ mg}}{10.000 \times 10^{-3} \text{ kg}}$ = 37.3 ppm			
1			This sample of salt meets Georgia's regulations for iodised salt.			
	b	i	Negatively charged $H_2AsO_3^{-1}$ ion and $[Ce(NO_3)_6]^{2-1}$ ion repel each other causing high activation			
			energy of the reaction. [1]			

Mark Scheme for Data-based application questions: Physical and Inorganic Chemistry

	Rate = k' [KI] ^b [(NH ₄) ₂ [Ce(NO ₃) ₆]]
	$t_{\frac{1}{2}} = \frac{\ln 2}{k' [KI]^b}$
	Since half-life in run 1 is half of that of run 3 when [KI] is run 1 is double of that in run 3, b = 1. Reaction is first order with respect to KI. [1]
	Rate = k' [KI] [(NH ₄) ₂ [Ce(NO ₃) ₆]]
	Half-lives of run 2 are measured to be 21s and 25s. Half-life of run 2 is 23s (on average), which is no different from run 1. [1] Hence, changing [H ₃ AsO ₃] has no effect on the rate/k'. [1] Order of reaction with respect to H ₃ AsO ₃ is 0. [1]
	Candidates should not take the "initial" rate of each experiment because the question states that "The first reading of the absorbance of the reaction mixture is recorded at time = 0 s. This is not the time when the reaction first starts ."
ii	Half-life in Run 1 is 48s (on average).
	[1] for both expressions (award ecf) Rate = k [KI] [(NH ₄) ₂ [Ce(NO ₃) ₆]]
	$t_{\frac{1}{2}} = \frac{\ln 2}{k [\text{KI}]}$
	Substituting the values and solving for k, [1] for k and correct units $k = 1.01 \times 10^4 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$

Mark Scheme for Data-based application questions: Physical and Inorganic Chemistry

