CHEMISTRY Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. Answer all questions provided on the Question Paper. The use of an approved scientific calculator is expected, where appropriate. The number of marks is given in brackets [] at the end of each question, or part question. This document consists a total of 12 printed pages. | | | This decament consists a total of 12 printed pages. | |---|------|--| | 1 | (a) | The molar volume of a gas at room temperature and pressure is 24 dm ³ mol ⁻¹ . | | | (i) | Define the <i>mole</i> . | | | (ii) | Derive the quantity stated in (a). | (b) | An essential assumption you had to use in part (a)(ii) was that the gas was ideal. | | |------|--|-----| | (i) | State 3 assumptions of an ideal gas. | [2] | | (ii) | A real gas is not ideal, but can behave as an ideal gas under certain conditions. State these conditions and explain why so. | [2] | A sample of **F** was dissolved in H₂SO₄ (aq), producing solution **G**, which was a mixture of tin(II) sulfate and tin(IV) sulfate. A 25.0 cm³ sample of solution **G** was titrated with 0.0200 mol dm⁻³ KMnO₄. 13.50 cm³ of KMnO₄ was required to reach the end-point. The reaction occurring during the titration is $2MnO_4^- + 16H^+ + 5Sn^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 5Sn^{4+}$ Calculate the amount in moles of Sn²⁺ in 25.0 cm³ of solution **G**. (i) [2] Another 25.0 cm³ sample of solution **G** was stirred with an excess of powdered zinc. This converted all the tin(IV) to tin(II). The excess zinc powder was filtered off and the filtrate was titrated with 0.0200 mol dm⁻³ KMnO₄ as before. This time, 20.30 cm³ of KMnO₄ was required to reach the end-point. (ii) Calculate the amount in moles of Sn⁴⁺ in 25.0 cm³ of solution **G** and hence deduce the Sn²⁺/Sn⁴⁺ ratio in the oxide **F**. [2] (iii) Write the formulae for tin(II) oxide and tin(IV) oxide. [1] (iv) Using your answers to (c)(ii) and (c)(iii), suggest the formula of F. [1] Powdered iron can also convert all the tin(IV) in solution **G** to tin(II). In the process, the iron is oxidised to iron(II). Explain how the second titre value would be affected if powdered iron was used in place of powdered zinc in the experiment. [1] Tin is a Group IV element. It forms a mixed oxide, **F**, that contains the metal in both oxidation states II and IV. The formula of **F** can be found by the following method. (c) | (d) | On separate axes, sketch a graph showing the behaviour of an ideal gas, of | | | | |-------|---|---|-----|--| | (i) | 1 | pV against p , with constant n and T . | | | | | 2 | density against T , with constant n and p . | | | | | 3 | p against $\frac{1}{V}$, with constant n and T . | [4] | | | (ii) | On the | same axes of part $(d)(i)1$, sketch a graph showing the behaviour for N_2 ; and | | | | | В | NH ₃ ; with the conditions stated in d(i)1 . | [2] | | | | Label t | he corresponding lines as A and B . | | | | (iii) | Accou | nt for the shape of your graph for (d)(ii)A. | [2] | | | (iv) | Accou | nt for the difference in the shape of your graph for (d)(ii)A and B. | [1] | 2 Silicon is able to form highly coordinated compounds with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents. ## Part 1: Standardisation of Na₂SiF₆ solution Aqueous solution \mathbf{F} : 0.855 g of Na₂SiF₆ (M_r = 188.053) dissolved in water (total volume: 200 cm³) Aqueous solution **G**: 6.86 g of $Ce_2(SO_4)_3$ ($M_r = 568.424$) dissolved in water (total volume: 200 cm³) Precipitation titration of 50.0 cm³ of solution **F** by dropwise adding solution **G** in the presence of xylenol orange, which coordinates to Ce³⁺, as an indicator was conducted. After adding 18.8 cm³ of solution **G**, the colour of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce³⁺, and the only resulting silicon compound is Si(OH)₄. The endpoint is where no more precipitate is formed. The precipitation reaction is not a redox reaction. | (a) | (i) | Calculate the amount of Na_2SiF_6 and $Ce_2(SO_4)_3$ reacted in this titration to 4 significant figures. | [2] | |-----|-------|--|-----| | | (ii) | Suggest the identity of the precipitate generated in this titration. | [1] | | | (iii) | Draw the dot-and-cross diagram for Na ₂ SiF ₆ . | [1] | | | (iv) | Suggest a chemical equation for the precipitation titration. | [1] | ## Part 2: Reaction of CCI4 with Na₂SiF₆ The fluorination reaction of CCl₄ using Na₂SiF₆ was carried out as follows. CCl₄ reacts with Na₂SiF₆ to form a chlorofluorocarbon (CFC), of varying number of fluorine atoms in the product (1 to 4). NaCl is the by-product. **x** grams of Na₂SiF₆ were added to 500.0 g of CC l_4 and heated to 600 K in a sealed pressure-resistant reaction vessel. The unreacted Na₂SiF₆ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 dm³ with CC l_4 (solution **H**). Solution **H** only contains SiF₄ as a silicon-containing compound. A 19 F NMR spectrum detects products CFC l_3 , CF $_2$ C l_2 , CF $_3$ Cl, and CF $_4$ (Table 1). The integration ratios in the 19 F NMR spectrum are proportional to the number of fluorine nuclei. | ¹⁹ F NMR Data | CFCl ₃ | CF ₂ Cl ₂ | CF ₃ C <i>l</i> | CF ₄ | |--------------------------|-------------------|---------------------------------|----------------------------|-----------------| | Integration ratio | 45.0 | 65.0 | 18.0 | 2.0 | SiF₄ is hydrolysed to form H₂SiF₆ according to the following equation. $$3 \text{ SiF}_4 + 2 \text{ H}_2\text{O} \rightarrow \text{SiO}_2 + 2 \text{ H}_2\text{SiF}_6$$ 10.0 cm 3 of solution **H** was added to an excess amount of water, which resulted in the complete hydrolysis of SiF $_4$. After separation, the H $_2$ SiF $_6$ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na $_2$ SiF $_6$ (aqueous solution **J**). The precipitate of unreacted Na_2SiF_6 and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (named solution **K**; volume = 10.0 dm^3). Then, additional precipitation titrations using solution ${\bf G}$ were carried out, and the endpoints of the titrations with ${\bf G}$ were as follows: - For solution J (entire amount): 61.6 cm³ - For 100 cm³ of solution **K**: 44.4 cm³ It should be noted that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration. **(b)** Using the information above, calculate the mass of NaC*l* produced in the reaction vessel. [6] • You should consider finding the amount of SiF₄ in solution **H**. | (a) Lies your answer in (b) and other information to find y | [2] | |---|-----| | (c) Use your answer in (b) and other information to find x. | [3] | | | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (c) Use your answer in (b) and other information to find x. | [3] | | (d) | 77.8% of the CCl ₄ used as a starting material was unreacted. Calculate the mass of CF ₃ Cl generated. | [3] | |-----|--|-----| [Total: 17] | |